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1 Introduction

For certain strongly coupled dynamics of gauge theories, gauge/gravity correspondence has

become a useful method to study the problems, alternative to the conventional techniques

such as perturbation theory. Although it was originally developed in the case of large

color Nc and strong t’Hooft coupling λ = g2
YMNc limit, it has given us a considerable

amount of new insights on generic strongly coupled gauge theories, and in many occasions

its predictions capture, at least qualitatively, right physics for otherwise difficult non-

perturbative phenomena. Of particular interests are of course possible applications to

QCD. As QCD coupling runs to a large value at low energy, it is a logical hope that some

low energy QCD phenomena which are hard to be explained by other means may have

explanations in holographic QCD. It is at least worthwhile to study the problems in the

framework to see what it pre/post-dicts and also to compare with other known methods.

Not only low energy QCD but also finite temperature deconfined quark-gluon plasma

has been an active area of applications of gauge/gravity correspondence. The main motiva-

tion is the experimental finding at RHIC indicating a strongly coupled phase of quark-gluon

plasma. Moreover, one may expect more sensible connections between finite temperature

phases of different gauge theories and the QCD plasma, because at finite temperature

fermions and scalar bosons get effective masses and become less relevant than the universal

gauge field dynamics. Hydrodynamics would be a right place for searching for some univer-

sality as it is describing precisely the long wavelength transport dynamics for which these

massive modes may decouple. There has been an enormous amount of recent works study-

ing hydrodynamics and transport coefficients in the gauge/gravity correspondence ( see

refs. [1, 2] for reviews), although it still seems to remain as a fruitful area of further research.
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In this work, we will study one more example to the plethora of holographic QCD

applications: the computations of chiral magnetic conductivity [3, 4] at finite frequency.

This is motivated by a recent work of Kharzeev and Warringa [4] which computes the

time-dependent chiral magnetic conductivity in 1-loop perturbative QCD, aiming at a

weakly coupled phase of QCD plasma at very high temperature. Chiral magnetic effect

is the phenomenon where an electromagnetic current is induced parallel to the applied

magnetic field in the presence of non-zero chiral density (i.e. unbalance between positive

and negative helicity particles), and it is one kind of chiral-anomaly originated effects.

Chiral magnetic conductivity is the proportionality coefficient of the induced current to

the magnetic field. In a QCD plasma such as the RHIC experiment, finite local chiral

density can be generated by sphaleron fluctuations, and a large magnetic field may also

appear in off-center collisions along the direction of angular momentum. Consequently,

chiral magnetic effects may play some role in the subsequent plasma dynamics, and this

was the motivation of the above authors. However, as RHIC plasma seems to become rather

strongly coupled shortly after the collision, one needs other methods to complement the

previous weak coupling calculation. Gauge/gravity correspondence would be a worthwhile

try for this purpose. Lattice simulations for chiral magnetic effects for static but arbitrary

magnitudes of magnetic field are given in refs. [5].

In fact, the possibility of using holography for computing chiral magnetic conductivity

was first pointed out by Rebhan, Schmitt and Stricker in ref. [6]. Moreover, Son and

Surowka recently computed a similar quantity (they call ξB) in the static magnetic field

case [7]. See also the work by Lifschytz and Lippert [8] for other interesting phenomena

related to chiral anomaly in the holographic set-up. However, it seems that there has been

no study on the frequency dependent behavior of the chiral magnetic conductivity, which

would be relevant in hydrodynamic simulations of the RHIC experiment. This will be our

main focus and results in this paper.

As the precise holographic model of large Nc QCD is not known up to now, our objec-

tive is to set-up a couple of consistent holographic frameworks to compute time-dependent

chiral magnetic conductivity, and to provide the results based on those. Our first holo-

graphic model is the 5-dimensional Einstein gravity with a negative cosmological constant

coupled to two U(1) Maxwell fields; U(1)L ×U(1)R. As should be clear from the notation,

these two 5-dimensional gauge theories correspond to the 4-dimensional U(1)L × U(1)R
chiral symmetry that we are interested in. We will consider an exact Reisner-Nordstrom

black-hole solution charged only under the axial U(1)A = U(1)L−U(1)R to represent a finite

temperature phase with non-zero chiral density.1 The ”electromagnetism”, of which we will

turn on an external magnetic field and also read off the induced current, is the vector part

U(1)EM = U(1)L + U(1)R. The second holographic set-up that we will study is based on

the Sakai-Sugimoto model [10], which seems to be closer to the realistic QCD in quenched

approximation. We will consider its deconfined, chiral symmetry restored phase with one

flavor NF = 1, whose chiral symmetry is also U(1)L × U(1)R. The effective 5-dimensional

U(1)L × U(1)R gauge theory is a Dirac-Born-Infeld action and the back-reaction of it to

1See refs. [9] for previous studies of using this solution.
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the background geometry is consistently neglected in quenched/probe approximation. This

should be contrasted to the first holographic model where the full back-reaction is taken

into account.

In both set-ups, the common feature is the 5-dimensional Chern-Simons couplings for

U(1)L ×U(1)R gauge theory living in the holographic 5-dimensional bulk, corresponding to

the 4-dimensional chiral anomaly. As this is more or less dictated uniquely by the anomaly

structure, it is a universal feature, and the results directly related to it should be taken

as robust. The only difference between the two models is the details of the background

metric and how to treat the back-reaction of the finite axial/chiral density. One can take

our set-ups as two prototypical examples whether or not we consider the back-reaction of

the axial/chiral density.

Note added. Shortly after this paper, there appeared an interesting observation in

ref. [11] regarding the correct identification of holographic currents in the presence of 5D

Chern-Simons terms, which is relevant in our computation of chiral magnetic conductivity.

Ref. [11] computed zero frequency chiral magnetic conductivity in the Sakai-Sugimoto

model taking into account additional contributions coming from these modifications. We

will briefly summarize these modifications here, that will correct our currents we used in

the text by a constant, frequency-independent shift. At the end, we will also mention a few

puzzles that still remain even if we take this modification into account, which should be

resolved in the near future.

Firstly, as ref. [11] observed, one easily derives that the variation of 5D Chern-Simons

term in the 5D action gives us additional contribution to the currents,

∆CSJ
µ
L = −N eff

F Nc

24π2
ǫµνρσ(AL)ν(FL)ρσ , ∆CSJ

µ
R = +

N eff
F Nc

24π2
ǫµνρσ(AR)ν(FR)ρσ , (1.1)

which should be added to our currents in the text according to AdS/CFT dictionary.

Note that the gauge fields appearing on the right-hand sides are external UV boundary

fields, without any component of subleading dynamical piece. This is one characteristically

different property of these additional contributions, which are of local, contact-term type,

compared to the one from the subleading piece in the text. The total currents would be

then the sum of the two if we accept these modifications. The above gives to the EM

current jEM = e(jL + jR) an extra piece

∆CSjEM =
e2N eff

F Nc

12π2
ǫµνρσ ((Aa)ν(FEM )ρσ + (AEM )ν(Fa)ρσ) , (1.2)

where the external EM and axial gauge potentials are defined by AL = eAEM − Aa and

AR = eAEM + Aa. In our situation, we turn on the time component of axial potential

(Aa)0 = µa as a chemical potential for the axial charge, and also an external EM magnetic

field B3
EM = (FEM )12 along x3 direction, to define chiral magnetic conductivity. From the

above, the modification of chiral magnetic conductivity would therefore be

∆CSσ = −e2µa

6π2

(

N eff
F Nc

)

. (1.3)
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Note that due to the local nature of the above modifications, the shift is simply a constant

without any momentum or frequency dependence of the probe field BEM . Therefore, our

plots can simply be shifted by this constant amount without a need for re-computations.

This is one story, while ref. [11] went further to propose an interesting observation.

They realized that even after the above modification, the EM current is not strictly con-

served in the presence of external axial potential Aa, that is, one can find from the 5D

equations of motion that

∂µJ
µ
EM = −N eff

F Nc

24π2
ǫµνρσ(FEM )µν(Fa)ρσ . (1.4)

The details can be found in ref. [11], but we only mention that they added an additional

local counter-term, called Bardeen-term, in the regularized holographic effective action, to

remedy this non-conservation. This additional counter-term, which can be added on the

UV boundary as a different holographic renormalization prescription, gives us additional

contribution to the current of similar type as above from the 5D Chern-Simons term. As

can be easily expected, this contribution is also of local type and its contribution to the

chiral magnetic conductivity is again a simple constant without any frequency dependence.

If we choose to include this too, in total the induced EM vector current jEM = e(jL +

jR) receives additional contribution

∆j
µ
EM =

e2N eff
F Nc

4π2
ǫµνρσ(AA)ν(FEM )ρσ , (1.5)

which gives us a constant shift in the chiral magnetic conductivity by

∆σ = −e2µa

2π2

(

N eff
F Nc

)

, (1.6)

that is precisely minus of the zero frequency value σ(0) we obtain in this paper, so that the

zero frequency chiral magnetic conductivity in their prescription vanishes. As they pointed

out, there is no a priori reason for vanishing chiral magnetic conductivity when the vector

current is strictly conserved. In fact, because the additional contribution is a frequency-

independent shift, the real part of our resulting figures 2, 3, 5, and 6 are simply shifted down

by ∆σ, and there is non-zero chiral magnetic conductivity at finite frequency even in their

prescription. As the magnetic fields relevant in RHIC experiments are time-dependent,

chiral magnetic conductivity will still be at work, but with a different detailed prediction.

Finally, let us mention a few seemingly puzzling aspects of the currents even after we

take into account Chern-Simons contributions. First, combined with our resulting plots,

the chiral magnetic conductivity goes to a constant value when ω → ∞. Dynamically

this doesn’t make sense, because the medium cannot respond to the perturbation which is

arbitrary fast. If we use only subleading piece as we did in the text, we do get a nice damping

when ω → ∞. This seems to indicate there might be something we are still missing at the

moment. Another point, which is probably related to the first point, is that when we take

a variation of 5D Chern-Simons action, one also gets a contribution from the IR boundary,

which in our case is the horizon. It could be that one has to consider also the IR boundary

contributions to resolve the first puzzle, which we hope to clarify in the near future.

– 4 –
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In summary, there indeed is an issue regarding what is the correct holographic current

in the presence of 5D Chern-Simons term as we briefly reviewed current proposals. At

the moment, arguably there seems no definite answer for that. However, the purpose in

the present paper is to study frequency dependence of chiral magnetic conductivity, and

because the present differences between different proposals are all constant shifts, our main

results can easily accommodate the future resolving the issue.

2 A quick review on physics of chiral magnetic effect

A 4-dimensional field theory at finite temperature that gives rise to the chiral magnetic

effect, such as chiral symmetry restored phase of QCD plasma, has the following basic

ingredients

• There are two chiral U(1) symmetries U(1)L and U(1)R, each having a non-zero

triangle anomaly with the same magnitude but with opposite sign. Equivalently, if

one weakly gauges these symmetries by coupling to non-dynamical gauge fields AL

and AR respectively, their current conservation laws are violated by

∂µj
µ
L =

N eff
F Nc

32π2
ǫµναβ(FL)µν(FL)αβ ,

∂µj
µ
R = −N eff

F Nc

32π2
ǫµναβ(FR)µν(FR)αβ , (2.1)

where N eff
F is the effective number of flavors counted as fundamental representations

of the color SU(Nc), and FL,R are field strengths of AL,R.

• Turn on a finite chemical potential for the axial U(1)A whose current is

jA = −jL + jR , (2.2)

while keeping the system neutral under the vector ”electromagnetic” U(1)EM

jEM = e (jL + jR) , (2.3)

where e is the electromagnetic coupling constant. In the language of weakly-gauging

symmetries, these correspond to

AL = eAEM − AA , AR = eAEM + AA . (2.4)

Note that U(1)EM is anomaly-free and it is consistent to let AEM be a real dynamical

gauge theory as the Nature does.

• Apply a homogeneous but possibly time-dependent magnetic field of AEM along say

x3 direction,

B3
EM = (FEM )12 = B(ω)e−iωt , (2.5)

which should be treated as an external perturbation to the system. Then the chiral

magnetic effect induces the electromagnetic current j3
EM parallel to B3

EM

j3
EM = j(ω)e−iωt ≡ σ(ω)B(ω)e−iωt . (2.6)

The σ(ω) is the chiral magnetic conductivity [3, 4].

– 5 –
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An intuitive explanation on the microscopic origin of this phenomenon was given in

ref. [4]. For simplicity, consider a free massless one flavor of quarks (qL, qR) with unit

electromagnetic charge. We emphasize that masslessness is important to have chiral sym-

metry. Upon quantizing qL, one gets a particle of negative helicity (meaning that its spin

is opposite to its momentum) as well as its anti-particle of positive helicity with a negative

electromagnetic charge, and vice versa for qR. Due to the Wigner-Eckart theorem, the

magnetic moment of an elementary particle should be proportional to its spin, and for

positively charged particles/anti-particles the magnetic moment is in the same direction of

the spin, while for negatively charged ones it is opposite to the spin. Now imagine applying

an external electromagnetic magnetic field, then the magnetic moments of particles/anti-

particles will tend to align along the direction of the applied magnetic field. Because the

magnetic moment, the spin, and the momentum are correlated with each other as described

above, one can easily deduce the following pattern of responses

• Positively charged particles as well as negatively charged anti-particles from qL tend

to move in reverse direction to the magnetic field. Let’s denote them as (q+
−1/2

, q−
+1/2

)

where the upper index represents the charge and the lower the helicity.

• Positively charged particles as well as negatively charged anti-particles from qR tend

to move towards the same direction as the magnetic field. We denote them as

(q+
+1/2, q

−
−1/2).

Then, having a finite chemical potential for the axial U(1)A symmetry which might be

achieved by local sphalerons means that the number of positive helicity states is larger

than the number of negative helicity states

N
(

q−+1/2

)

+ N
(

q+
+1/2

)

> N
(

q+
−1/2

)

+ N
(

q−
−1/2

)

. (2.7)

In conjunction with the above discussion, observe that the left-hand side of the above

inequality induces a positive electromagnetic current along the magnetic field, while the

right-hand side would contribute to a current in opposite direction to the magnetic field,

so that the above inequality tells us there would be a net positive electromagnetic current

induced along the magnetic field: this is the chiral magnetic effect.

Although it is not absolutely necessary, the electromagnetic neutrality that we require

for simplicity implies that

N
(

q+
−1/2

)

− N
(

q−
+1/2

)

= −
(

N
(

q+
+1/2

)

− N
(

q−
−1/2

))

, (2.8)

where the left-hand side is proportional to the chemical potential for qL (or U(1)L) and

the right-hand side is the minus of the chemical potential for qR (or U(1)R), which implies

µR = −µL = µA with µA being the axial chemical potential we turn on in the background.

It might be an interesting future direction to generalize our computations to the cases with

non-zero electromagnetic charge density too.

– 6 –
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3 Retarded response (Green’s) function in Eddington-Finkelstein coor-

dinate

Before presenting holographic calculations of chiral magnetic conductivity, let us make a

short digression to explain our method of obtaining retarded response function in a black-

hole background. There is by now a well-established procedure to compute any retarded

response function in gauge/gravity correspondence in linear response approximation [12],

and our results will also belong to this category. As we are interested in the finite frequency

ω, the method based on derivative expansions such as those of ref. [13], although it is fully

non-linear, is not suitable for our purpose, as one necessarily truncates the expansion at

some finite order of derivatives and the results lose its validity at high ω. On the other hand,

the linear response approach can be used at any frequency ω while it requires the driving

source to be small for the linear approximation to be valid. It seems both approaches have

pros and cons.

In linear response approach, one perturbs the system by an external source B coupled

to an operator J of the theory, and the first-order perturbation theory tells us that the

response in the expectation value of the operator 〈J〉 is given by the convolution of the

source with the retarded Green’s function

〈J(x)〉 = −
∫

d4x′ GR(x, x′)B(x′) . (3.1)

Typical interests, including our present work, are therefore the computations of the re-

tarded response function GR. In the language of quantum mechanics, the retarded response

function GR has an expression

GR(x, x′) = (−i)θ(t − t′)tr
(

e−βH [J(x), J(x′)]
)

, (3.2)

and it is one kind of 2-point Green’s function in Minkowski signature. Because gauge/gravi-

ty correspondence is typically formulated as a prescription to compute precisely the Green’s

functions or correlation functions, one might hope to compute GR rather easily by simply

applying the suitable gauge/gravity dictionary. However, this ”suitable” dictionary turns

out to be rather non-trivial in Minkowski signature, especially retarded Green’s function in

the presence of black-hole horizon, issues being whether or not one should treat the horizon

as boundary, etc. The issues have been settled by now, and one has a definite well-defined

way of computing GR holographically in linear response theory [12].

However, looking back the original motivation of studying the causal response in the

presence of driving external source, the quantum mechanical expression (3.2) which is

a language of 4-dimensional field theory side in fact seems unnecessary. What one is

interested is simply the resulting 〈J(x)〉 causally responding to the external source B(x) in

the Minkowski evolution of the 5-dimensional holographic dual theory. The fact that GR

has a field theory interpretation of 2-point correlation function is not needed to find the

answer, if one can directly solve the Minkowski dynamics in 5-dimensions in the presence of

external source B(x), because the expectation value 〈J(x)〉 is also encoded in the resulting

5-dimensional solution as a normalizable mode in the near boundary expansion according to

– 7 –
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the holographic renormalization [14]. In other words, once we accept the results of standard

holographic renormalization a la ref. [14], which states that the expectation values can

simply be read off from the near boundary expansion of the 5-dimensional fields even in

the presence of black-hole horizon and in Minkowski signature, we can by-pass the issue of

calculating retarded Green’s function, by simply solving the Minkowski equation of motions

with ”physically obvious” in-coming boundary condition at the black-hole horizon. With

the UV boundary condition also fixed by the given source B(x), this uniquely determines

the 5-dimensional solution and from it one can directly read off 〈J(x)〉. The important

question is whether this way gives us the same results consistently to those obtained by the

well-established method of computing retarded Green’s functions. For a massless scalar, it

is checked to be true, and we conjecture it is always true.

Turning to a practical side, we will adopt the Eddington-Finkelstein coordinate system

for a given background black-hole geometry in which the metric takes a form

ds2 = −r2V (r)dt2 + 2drdt + r2
3
∑

i=1

(

dxi
)2

, (3.3)

where the horizon is located at the position V (rH) = 0. The motivation is that the in-

coming boundary condition at the horizon can be easily fulfilled in this coordinate by

simply imposing only regularity at the horizon on the solutions. To see this more clearly,

consider a mode with frequency ω along the time-like Killing vector ∂
∂t

φ(r, t) ∼ e−iωtf(r) . (3.4)

Near the horizon where V (r) ≈ 0, the metric becomes

ds2 ∼ 2drdt + ds2
T , (3.5)

where ds2
T is along the transverse directions xi that is not important in the discussion.

Therefore, the (r, t) coordinates become two local null directions near the horizon, and in

terms of the more standard local flat coordinates, say (X0,X1), they are written as

t =
1√
2

(

X0 + X1
)

, r =
1√
2

(

−X0 + X1
)

, (3.6)

so that ds2 ∼ −
(

dX0
)2

+
(

dX1
)2

+ ds2
T . In writing the above, we re-parameterize r such

that r = 0 is the location of horizon. See the figure 1 for a schematic definition of (X0,X1),

and the region of X0 > X1 is inside the horizon while X0 < X1 corresponds to the region

outside the horizon. Hence, the mode (3.4) on which we impose only regularity at the

horizon r = rH has a near horizon behavior

φ ∼ e−iωtf(rH) = e
−i ω√

2
(X0+X1)

f(rH) , (3.7)

which is automatically in-coming towards the region inside the horizon. Note that the

conclusion doesn’t depend on the signature of ω.

– 8 –
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r

tInside the horizon

Outside the horizon

X_1

X_0

Horizon

Figure 1. A schematic description of the horizon in the Eddington-Finkelstein coordinate.

Another way of understanding this is to go back to the more conventional form of the

black-hole metric

ds2 = −r2V (r)dt2∗ +
dr2

r2V (r)
+ ds2

T , (3.8)

achieved by a relation

t∗ = t −
∫ r

∞

dr′

(r′)2V (r′)
. (3.9)

Note that the time-like Killing vector retains the same expression

∂

∂t
=

∂

∂t∗
, (3.10)

and a generic mode with frequency ω would be

φ(r, t∗) = e−iωt∗f∗(r) = e−iωt

(

e
iω

R

r

∞
dr

′
(r′)2V (r′) f∗(r)

)

≡ e−iωtf(r) , (3.11)

so that by definition

f∗(r) = e
−iω

R

r

∞
dr

′
(r′)2V (r′) f(r) . (3.12)

Near the horizon the phase factor in (3.12) is precisely what one would need to make φ(r, t∗)

to be an in-coming wave, so that by simply requiring only regularity of f(r) at the horizon

the mode becomes in-coming automatically ; in other words, working in the Eddington-

Finkelstein coordinate is equivalent to giving a preference to the in-coming modes, and

the out-going modes in (r, t∗) coordinate would look singular in the Eddington-Finkelstein

coordinate. Reversing the logic, an inverse Eddington-Finkelstein coordinate where

ds2 = −r2V (r)dt2∗∗ − 2drdt∗∗ + ds2
T . (3.13)

should be useful for picking-up only out-going modes and for computing advanced response

(Green’s) functions.

– 9 –
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4 Holographic model I: Einstein plus U(1)2

The simplest holographic model that implements the symmetry structure of the section

2 would be a 5-dimensional Einstein gravity with negative cosmological constant plus a

U(1)L × U(1)R gauge theory corresponding to the chiral symmetry in 4-dimensions. In

addition, the 4-dimensional triangle anomaly of U(1)L × U(1)R will be reflected as a 5-

dimensional Chern-Simons term in the holographic model. The minimal Lagrangian is

then

(16πG5)L = R + 12 − 1

4
(FL)MN (FL)MN − 1

4
(FR)MN (FR)MN (4.1)

+
κ

4
√−g5

ǫMNPQR

(

(AL)M (FL)NP (FL)QR − (AR)M (FR)NP (FR)QR

)

,

where we normalized the cosmological constant to have a unit radius for AdS5 for simplicity.

The capital letters M,N, . . . denote 5-dimensional indices while Greek letters µ, ν, . . . will

be reserved for 4-dimensional coordinates. The epsilon symbol in the above is purely

numerical as we factor out
√−g5 explicitly, and our convention is ǫrµναβ = ǫµναβ .

It is not difficult to relate the value of κ with the 4-dimensional anomaly coefficient [7].

The equation of motion for AL is

∇N (FL)MN − 3κ

4
√−g5

ǫMNPQR(FL)NP (FL)QR = 0 , (4.2)

and in the pure AdS5 vacuum in Poincare coordinate

ds2 = −r2dt2∗ +
dr2

r2
+ r2

3
∑

i=1

(dxi)2 , (4.3)

the M = r component becomes

∂µ(FL)rµ − 3κ

4r3
ǫµναβ(FL)µν(FL)αβ = 0 . (4.4)

According to AdS/CFT dictionary, the 4-dimensional U(1)L current that AL corresponds

to is given by

j
µ
L = − 1

16πG5
lim

r→∞
r3(FL)rµ , (4.5)

while the external weakly gauging potential that couples to j
µ
L is the boundary value of

AL(r = ∞), so that by taking r → ∞ limit of (4.4), we have

∂µj
µ
L = − 3κ

64πG5
ǫµναβ(FL)µν(FL)αβ , (4.6)

where FL now represents the 4-dimensional weakly gauging potential coupled to jL. In

comparison to (2.1), we thus have

κ = −2G5

3π

(

N eff
F Nc

)

. (4.7)
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Because we are going to turn on the axial chemical potential, it is more convenient to

work in terms of Aem and Aa related to AL,R by (2.4),

AL = eAem − Aa , AR = eAem + Aa , (4.8)

where these fields now represent 5-dimensional gauge fields accordingly. The action density

then takes a form

(16πG5)L = R + 12 − e2

2
(Fem)MN (Fem)MN − 1

2
(Fa)MN (Fa)

MN (4.9)

− κ

2
√−g5

ǫMNPQR

(

3e2(Aa)M (Fem)NP (Fem)QR + (Aa)M (Fa)NP (Fa)QR

)

,

whose equations of motion are

RMN +

(

4+
e2

6
(Fem)2+

1

6
(Fa)

2

)

gMN−e2 (Fem)PM (Fem)P
N−(Fa)PM (Fa)

P
N = 0 ,

∇N (Fa)
MN +

3κ

4
√−g5

ǫMNPQR
(

e2(Fem)NP (Fem)QR + (Fa)NP (Fa)QR

)

= 0 ,

∇N (Fem)MN +
3κ

2
√−g5

ǫMNPQR(Fa)NP (Fem)QR = 0 . (4.10)

The normalization of the Aem kinetic term looks a little unconventional, but in this way

the UV boundary value of Aem couples to the EM current jem = e(jL + jR) with unit

strength, and it is more convenient in this sense.

There is an exact AdS Reisner-Nordstrom type black-hole solution to the above equa-

tions of motion with only an axial charge being turned on, and we will use this space-time

as a background representing a finite temperature plasma with an axial/chiral chemical

potential. The explicit form of the solution in Eddington-Finkelstein coordinate is

ds2 = −r2V (r)dt2 + 2drdt + r2
3
∑

i=1

(dxi)2 ,

Aa =

(

Q

r2
H

− Q

r2

)

dt , Aem = 0 ,

V (r) = 1 − m

r4
+

2Q2

3r6
, (4.11)

where the location of horizon is the largest root of V (rH) = 0, and the axial/chiral chemical

potential can be identified as

µa =
Q

r2
H

. (4.12)

Our task is to perturb the above solution by a (small) oscillatory external EM magnetic

field B3
em along x3, and solve the resulting linearized equations of motion of (4.10) to read

off an induced EM current j3
em along x3 direction. Holographic renormalization tells us

that j3
em is encoded in the near UV boundary expansion of the resulting solution of Aem by

j3
em =

e2

4πG5
lim

r→∞
r2(Aem)3 . (4.13)
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Note that the factor e2 is from our convention of the 5D kinetic term for Aem in the

action density.

In this linearized order, it is easy to see that the gravity fluctuations δgMN and the

fluctuation of the axial gauge field δAa in fact do not couple to the electromagnetic fluc-

tuation δAem, so that the problem is much easier than naively expected. For example, in

the second equation of (4.10) it is consistent to turn off δAa = 0 as δAem’s contribution

would be only quadratic. The same is true for δgMN in the Einstein equation, so that for

our purpose we can simply let δgMN = δAa = 0 and just consider the equation

∇N (Fem)MN +
3κ

2
√−g5

ǫMNPQR(Fa)NP (Fem)QR = 0 , (4.14)

with Aa being replaced by the background value in the above solution. This decoupling

between δAem and δgMN has a physical interpretation: to linear order, external electromag-

netic perturbations do not introduce additional energy-momentum, especially there would

be no momentum flow induced at first order. For example, in the microscopic picture for

chiral magnetic effects in section 2, if we keep electrical neutrality by

N
(

q+
−1/2

)

− N
(

q−+1/2

)

= −
(

N
(

q+
+1/2

)

− N
(

q−
−1/2

))

, (4.15)

the left-hand side is proportional to the chemical potential µL for qL, and vice versa for

the right-hand-side and qR. Given a temperature, the thermal physics of qL would be

precisely mirror to the physics of qR, so that we can expect that the number of N
(

q+
−1/2

)

from qL is precisely equal to N
(

q−
−1/2

)

from qR in the situation of µL = −µR. Similarly,

N
(

q−+1/2

)

= N
(

q+
+1/2

)

. This gives us at the end

N
(

q+
−1/2

)

+ N
(

q−+1/2

)

= N
(

q+
+1/2

)

+ N
(

q−
−1/2

)

. (4.16)

However, observe that the right-hand side is the total number of particles/anti-particles

that move along the magnetic field, while the left-hand side is the total number that move

opposite to it, so that we conclude there would be no net momentum flow induced along

the magnetic field. This is the physics reason behind the decoupling between δgMN and

δAem, which should be universal for any EM perturbations in neutral systems.

This feature would be absent in the set-up having only one U(1) symmetry with a

triangle anomaly, as recently studied in ref. [7]. In this case, we have, say, qL only without

qR. Turning on a chemical potential for qL, one would have an excess of q+
−1/2 over q−+1/2;

N(q+
−1/2) > N(q−+1/2), and an external magnetic field would move them together in the op-

posite direction to it, and would subsequently induce a net negative chiral magnetic current.

This effect corresponds to ξB in ref. [7] for a static external magnetic field. However, as

the particles/anti-particles from qL move together in the same direction, without having a

compensating flow by qR, there will be a net momentum flow introduced by the effect. This

complicates choosing a right Landau frame on which there shouldn’t be any momentum

flow by definition. This might explain the complicated second term of ξB in ref. [7].
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Back to our main purpose, the linearized equations for Aem in components are

M = r : ∇NF rN = 0 ,

M = t : ∇NF tN = 0 ,

M = i : ∇NF iN +
6κQ

r6
ǫijkFjk = 0 , (4.17)

where we omitted and will omit δ and subscript em in δAem for clarity in the following.

The non-vanishing Christofel symbols are

Γr
rt = Γr

tr = −Γt
tt = −1

2
∂r

(

r2V (r)
)

, Γr
tt =

1

2
r2V (r)∂r

(

r2V (r)
)

,

Γi
rj = Γi

jr =
1

r
δi
j , Γr

ij = −r3V (r)δij , Γt
ij = −rδij , (4.18)

from which one arrives at the following explicit equations

(∂tFtr) +
1

r2
(∂iFti) + V (r) (∂iFri) = 0 ,

∂r

(

r3Ftr

)

− r (∂iFri) = 0 , (4.19)

∂r

(

rFti + r3V (r)Fri

)

+ r (∂tFri) +
1

r
(∂jFji) −

6κQ

r3
ǫijkFjk = 0 .

We should fix our solution ansatz in accord to our purpose of computing time-dependent

chiral magnetic conductivity. First, one can always work in the radial gauge Ar = 0. More-

over, as we wouldn’t expect any net EM charge density appears in response to the homo-

geneous magnetic field, one can also adopt the ansatz At = 0. We will see the consistency

of this ansatz later as it will consistently solve the full equations of motion. We assume a

definite frequency ω for every field

Ai = Ai(r, x
i)e−iωt , (4.20)

and we require homogeneity along the x3 direction in which we turn on the magnetic field

B3 = F12, so that we simply drop ∂3 in the equations of motion. Again, the consistency

of these can be checked by the full equations of motion that our solutions will solve. As

Ftr = 0 in our ansatz, the first two equations in (4.19) are uniquely solved by

∂1A1 + ∂2A2 = 0 . (4.21)

At least we should have a non-zero F12 = ∂1A2−∂2A1, so that we need to give a finite wave-

number k⊥ = (k1, k2) to the transverse x⊥ = (x1, x2) coordinate, although we will take a

homogeneous limit k⊥ → 0 at the end to get a finite value of chiral magnetic conductivity

with only frequency dependence. These steps finally give us the following ansatz

A1 = k2f(r)e−iωt+ik⊥·x⊥
,

A2 = −k1f(r)e−iωt+ik⊥·x⊥
,

A3 = g(r)e−iωt+ik⊥ ·x⊥
. (4.22)
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The remaining equation to solve, i.e. the third equation in (4.19), gives us the following set

of two equations for f(r) and g(r),

∂r

(

−iωrf + r3V (r) (∂rf)
)

− iωr (∂rf) − 1

r
k2
⊥f − i12κQ

r3
g = 0 ,

∂r

(

−iωrg + r3V (r) (∂rg)
)

− iωr (∂rg) − 1

r
k2
⊥g +

i12κQ

r3
k2
⊥f = 0 , (4.23)

With these being solved, the full equations of motion are satisfied within our ansatz.

It is important to determine the right boundary conditions for the radial profiles f(r)

and g(r). As discussed in section 3, simple regularity at the horizon r = rH will be enough

to implement the in-coming boundary condition that is suitable for a causal retarded re-

sponse. At the UV boundary r → ∞, we need to have an external magnetic field B3 = F12.

Because of

F12 = −ik2
⊥f(r)e−iωt+ik⊥·x⊥

, (4.24)

this dictates that f(∞) 6= 0. On the other hand, we shouldn’t get any external perturbation

from A3, which imposes the normalizable boundary condition on g(r),

g(r) → O
(

1

r2

)

, r → ∞ . (4.25)

In fact, the induced EM current along x3 will be obtained by

j3
em =

e2

4πG5
lim

r→∞
r2g(r)e−iωt+ik⊥·x⊥

, (4.26)

so that our desired chiral magnetic conductivity will be computed as

σ(ω, k⊥) =
ie2

4πG5
lim

r→∞

r2g(r)

k2
⊥f(r)

. (4.27)

One can easily convince oneself that the equations (4.23) with the above boundary condi-

tions pose a well-defined procedure of calculating σ(ω, k⊥). One should resort to numerical

jobs to proceed further, however.

Focusing on a special case of homogeneity limit k⊥ → 0, one indeed gets a finite value

of chiral magnetic conductivity. Expanding f(r) in power series of k2
⊥,

f = f0 + k2
⊥f1 + · · · , (4.28)

one finds that g(r) should start its expansion from O(k2
⊥) for consistency,

g(r) = k2
⊥g1 + · · · . (4.29)

This is because the homogeneous differential equation

∂r

(

−iωr · +r3V (r) (∂r·)
)

− iωr (∂r·) = 0 , (4.30)

that g0 would have to satisfy has a unique solution regular at r = rH up to an overall

multiplication factor, and its UV boundary value at r → ∞ is in general finite unless one

– 14 –
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Figure 2. Frequency dependent chiral magnetic conductivity σ(ω) for various axial chemical

potentials. The solid line is the real part of σ(ω) while the dashed one is the imaginary part.

encounters a quasi-normal mode, but this happens only with a complex ω with a negative

imaginary part. However, this would contradict to our boundary condition (4.25), and one

necessarily has g0 = 0.

Inserting the above series expansions into (4.23), one gets

∂r

(

−iωrf0 + r3V (r)∂rf0

)

− iωr (∂rf0) = 0 ,

∂r

(

−iωrg1 + r3V (r)∂rg1

)

− iωr (∂rg1) +
i12κQ

r3
f0 = 0 , (4.31)

which is enough to obtain the homogeneous limit of chiral magnetic conductivity

σ(ω) = σ(ω, k⊥ → 0) =
ie2

4πG5
lim

r→∞

r2g1(r)

f0(r)
. (4.32)

Numerical job for computing σ(ω) with (4.31) is much simpler than the general case of

σ(ω, k⊥): One can first solve f0 from the first equation, and then use this to obtain g1

subsequently. See figure 2 and figure 3 for the numerical results of σ(ω) for several different

axial chemical potentials. In the appendix, we outline an easy method of producing our

numerical results.

Zero frequency limit ω → 0. It is useful to check our computation for the static

limit ω → 0 as it has been argued that the static limit is universally dictated by anomaly

irrespective to the details of the dynamics. The equation for f0 simplifies to

∂r

(

r3V (r)∂rf0

)

= 0 , (4.33)

whose unique regular solution at r = rH up to normalization is a constant: f0 = 1. The

subsequent equation for g1

∂r

(

r3V (r)∂rg1

)

+
i12κQ

r3
= 0 , (4.34)
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Figure 3. More results for other values of axial chemical potentials.

with the regularity at r = rH as well as the normalizability (4.25) at UV determines the

unique solution

g1(r) = i6κQ

∫ r

∞

dr′
1

(r′)3V (r′)

(

1

(r′)2
− 1

r2
H

)

. (4.35)

Using the explicit form of V (r), we in fact only need the fact that V (r) → 1 as r → ∞ to

find the near boundary behavior of g1 as

g1(r) →
i3κQ

r2
H

1

r2
+ · · · , r → ∞ , (4.36)

so that the chiral magnetic conductivity from (4.32) at zero frequency is

σ(ω → 0) ≡ σ0 = − 3κQe2

4πG5r
2
H

=
e2µa

2π2

(

N eff
F Nc

)

, (4.37)

where we used (4.7)

κ = −2G5

3π

(

N eff
F Nc

)

, (4.38)

as well as the expression for the axial/chiral chemical potential (4.12)

µa =
Q

r2
H

, (4.39)

in the last equality. This is indeed the right answer.

5 Holographic model II: the model of Sakai and Sugimoto

Our second model for a holographic calculation of time-dependent chiral magnetic conduc-

tivity is the deconfined and chiral symmetry restored phase of the Sakai-Sugimoto model at
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Figure 4. A schematic picture of the Sakai-Sugimoto model in its deconfined and chiral symmetry

restored phase.

finite temperature. This model is supposed to describe, at least qualitatively, the large Nc

limit of QCD with a small number of fundamental quarks in quenched approximation, and

in this sense would be more realistic than the somewhat arbitrary set-up in the previous

section. For simplicity, we will focus on a single flavor NF = 1 case, which means that we

have a single D8 and D8 probe brane pair embedded into a known black-hole solution for

a deconfined phase [15]. The chiral symmetry U(1)L and U(1)R that we are interested in

live on the world-volumes of these probe D8 and D8 branes respectively. For the chiral

symmetry to be restored/unbroken, we confine ourselves to the phase where each of these

branes meet the black-hole horizon and do not meet with each other. See the figure 4 for a

schematic picture. This also implies that the leading order dynamics on each 8-branes are

independent of each other: assigning U(1)L to D8 and vice versa for U(1)R and D8, the

total action will simply be a sum of the two 8-brane world volume actions

Stot = SD8 (AL) + SD8 (AR) , (5.1)

where

SD8/D8 = −µ8

∫

d9ξ e−φ
√

det (g∗ + 2πl2sF ) ∓ µ8

(

2πl2s
)3

3!

∫

FRR
4 ∧ A ∧ F ∧ F , (5.2)

with µp = (2π)−pl
−(p+1)
s . Note that the Chern-Simons coupling for D8 has the opposite sign

to that of D8, and we show only the relevant term with the FRR
4 4-form Ramond-Ramond

field strength as our background carries only this Ramond-Ramond field.

The 10-dimensional black-hole solution that provides a background corresponding to
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a deconfined phase in Eddington-Finkelstein coordinate is [15]

ds2 =

(

U

R

)
3
2
(

−f(U)dt2 + (dxi)2 +
1

(MKK ls)2
dx2

4

)

+ 2dUdt +

(

R

U

)
3
2

U2dΩ2
4 ,

FRR
4 =

(2πls)
3Nc

V4
ǫ4 , eφ = gs

(

U

R

)
3
4

, V4 = Vol(S4) =
8π2

3
,

R3 = πgsNcl
3
s , f(U) = 1 −

(

UT

U

)3

, (5.3)

where the temperatute β = 1
T is related to the location of the black-hole horizon UT by

β =
4π

3

(

R3

UT

)

1
2

, (5.4)

and x4 has a period (2πls) which is not essential for our purpose though. The FRR
4 is

normalized in such a way that

1

(2πls)3

∫

S4

FRR
4 = Nc , (5.5)

and this convention conforms to those in our writing of 8-brane actions (5.2). Each 8-branes

of our interest spans the coordinates (U, t, xi,Ω4) of total 9-dimensions sitting at a point in

x4, but dual QCD dynamics should be insensitive to the modes inside S4, so that we will

assume homogeneity along Ω4 directions and integrate over them from the very first stage.

After that, the resulting 5-dimensional action takes a form with a minor computation

SD8/D8 = −CR
9
4

∫

dx4dUU
1
4

√

det (g∗ + 2πl2sF ) ∓ Nc

96π2

∫

dx4dUǫMNPQRAMFNP FQR ,

(5.6)

with a definition of

C =
N

1
2

3 · 25 · π 11
2 g

1
2
s l

15
2

s

, (5.7)

for later convenience.

Our objective is to first construct a background solution having a finite chemical po-

tential µa for the axial current

Aa =
1

2
(−AL + AL) , (5.8)

while keeping the system neutral under electromagnetism for simplicity

eAem =
1

2
(AL + AR) , (5.9)

and then to consider a small external perturbation of electromagnetic magnetic field to

see its retarded response in the current. This means we turn on a chemical potential

µL = −µa for the U(1)L symmetry on the D8 brane, and similarly µR = µa for U(1)R on

the D8 brane. See ref. [16, 17] for turning on iso-spin chemical potentials in the model. To
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find the corresponding background solution, it is enough to keep FtU component only in

the action of the 8-branes, and a simple calculation gives

SD8/D8 = −C

∫

d4xdU U
5
2

√

1 − (2πl2s)
2(FtU )2 , (5.10)

whose solution is easily integrable to be

FtU =
±α

√

U5 + (2πl2s)
2α2

, (5.11)

with an integration constant α > 0, where the upper sign is for AL on the D8 and vice

versa for AR on the D8. One can always work in the radial gauge AU = 0 in which the

above solutions can be further integrated for At as

At(U) = ∓
∫ U

UT

dU ′ α
√

(U ′)5 + (2πl2s)
2α2

, (5.12)

where we have imposed the condition At(U = UT ) = 0 at the horizon to fix an integration

constant. The chemical potentials of U(1)L,R are then read off as the UV boundary values

of the above At respectively, which relates α with µa as

µa =

∫ ∞

UT

dU ′ α
√

(U ′)5 + (2πl2s)
2α2

=
2α

3U
3
2
T

2F1

(

3

10
,
1

2
,
13

10
,−(2πl2s)

2α2

U5
T

)

. (5.13)

We should remember this relation to identify a physical meaning of α.

Having obtained the background solution, one next needs to find a linearized equation

of motion for the vector part electromagnetism treated as a perturbation to the background

solution. One way of performing the analysis is to expand the 8-brane actions up to second

order in fluctuations so that the linearized equation of motion can be derived directly from

it. Using the series expansion

√

det (1 + δA) = 1 +
1

2
tr (δA) +

1

8
[tr (δA)]2 − 1

4

[

tr
(

(δA)2
)]

+ O
(

(δA)3
)

, (5.14)

a straightforward but substantial amount of algebra finally produces the result

S
(2)

D8/D8
= C

∫

d4xdU

[

L(U) +
1

2
A(U) (δFtU )2 − B(U) (δFti) (δFUi) −

1

2
C(U) (δFUi)

2

−1

4
D(U) (δFij) (δFij)

]

− Nc

8π2

∫

d4xdU ǫijkAt(U) (δFUi) (δFjk) , (5.15)

where here At(U) in the last term is

At(U) = +

∫ U

UT

dU ′ α
√

(U ′)5 + (2πl2s)
2α2

, (5.16)
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for both D8 and D8 branes, because the sign difference from the Chern-Simons terms is

compensated by having the opposite background chemical potentials, so that the fluctua-

tion actions for the 8-branes are now identical to each other. The appropriate functions

that appear in the above are

L(U) = −U
5
2

(

1 − (2πl2s)
2 (FtU )2

)
1
2

= −U5
(

U5 + (2πl2s)
2α2
)− 1

2 , (5.17)

A(U) = (2πl2s)
2U

5
2

(

1 − (2πl2s)
2 (FtU )2

)− 3
2

= (2πl2s)
2U−5

(

U5 + (2πl2s)
2α2
)

3
2 ,

B(U) = (2πl2s)
2

(

R

U

)
3
2

U
5
2

(

1−(2πl2s)
2 (FtU )2

)− 1
2
=(2πl2s)

2

(

R

U

)
3
2
(

U5+(2πl2s)
2α2
)

1
2 ,

C(U) = (2πl2s)
2f(U)U

5
2

(

1 − (2πl2s)
2 (FtU )2

)− 1
2

= (2πl2s)
2f(U)

(

U5 + (2πl2s)
2α2
)

1
2 ,

D(U) = (2πl2s)
2

(

R

U

)3

U
5
2

(

1−(2πl2s)
2 (FtU )2

)
1
2
=(2πl2s)

2

(

R

U

)3

U5
(

U5+(2πl2s)
2α2
)− 1

2 .

For a qualitative understanding, the detailed form of the above functions are not essential

except the fact that C(U) → 0 at the horizon U → UT , and their near-boundary behaviors

A(U) → (2πl2s)
2 U

5
2 , B(U) → (2πl2s)

2R
3
2 U ,

C(U) → (2πl2s)
2 U

5
2 , D(U) → (2πl2s)

2R3 U− 1
2 , U → ∞ . (5.18)

The structure of the above fluctuation action is in fact qualitatively identical to that in

our first holographic model, which will be more manifest later.

As the D8-brane action for fluctuations up to second order has an identical form to

that of the D8-brane, the total action for the electromagnetic fluctuations would be simply

a twice of (5.15) with the replacement

δFMN → e(δFem)MN , (5.19)

where we will omit the subscript em from now on for clarity, while we will leave δ. From

this action with the near-boundary behaviors (5.18), a gauge/gravity dictionary for the

current can be easily deduced as

j3
em = 3e2C(2πl2s)

2 lim
U→∞

U
3
2 (δA3) , (5.20)

which we will use later to find the induced electromagnetic current from the solution of δA

in response to an external EM magnetic field.

It is straightforward to write down the equations of motion from (5.15),

∂U (A(U)δFtU ) − B(U) (∂iδFUi) = 0 , (5.21)

A(U) (∂tδFtU ) + B(U) (∂iδFti) + C(U) (∂iδFUi) = 0 ,

B(U)(∂tδFUi)+∂U (B(U)δFti+C(U)δFUi)+D(U)∂j(δFji)−
Nc

8π2C
FtU ǫijkδFjk = 0 ,

whose structure is essentially similar to (4.19) in comparison as it should be expected.

Subsequent analysis henceforth is quite close to the previous holographic model. Starting
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from the ansatz

δA1 = k2f(U)e−iωt+ik⊥·x⊥
,

δA2 = −k1f(U)e−iωt+ik⊥·x⊥
,

δA3 = g(U)e−iωt+ik⊥ ·x⊥
. (5.22)

the full equations of motion are solved by the following two equations for f(U) and g(U),

∂U (C(U) (∂Uf) − iωB(U)f) − iωB(U) (∂Uf) − D(U)k2
⊥f − iNc

4π2C
FtU (U)g = 0 ,

∂U (C(U) (∂Ug) − iωB(U)g) − iωB(U) (∂Ug) − D(U)k2
⊥g +

iNc

4π2C
FtU (U)k2

⊥f = 0 ,

(5.23)

with the boundary conditions that they are regular at the horizon U = UT and g(U) should

be normalizable at UV,

g(U) ∼ 1

U
3
2

, U → ∞ . (5.24)

Using the current formula (5.20), and the external magnetic field

δF12 = −ik2
⊥f(∞)e−iωt+ik⊥·x⊥

, (5.25)

the momentum dependent chiral magnetic conductivity will be computed as

σ(ω, k⊥) = i3e2C(2πl2s)
2 lim

U→∞

U
3
2 g(U)

k2
⊥f(U)

. (5.26)

For the homogeneous limit k⊥ → 0, one expands

f = f0 + k2
⊥f1 + · · · , g = k2

⊥g1 + · · · , (5.27)

and f0 and g1 are solved by the equations

∂U (C(U) (∂Uf0) − iωB(U)f0) − iωB(U) (∂Uf0) = 0 , (5.28)

∂U (C(U) (∂Ug1) − iωB(U)g1) − iωB(U) (∂Ug1) +
iNc

4π2C
FtU (U)f0 = 0 ,

where one first solves the former equation and then use that to solve the second equation.

The homogeneous but frequency dependent chiral magnetic conductivity is then

σ(ω) = i3e2C(2πl2s)
2 lim

U→∞

U
3
2 g1(U)

f0(U)
. (5.29)

Static limit ω → 0. We check the static limit of our formula for consistency. In ω → 0

limit, the equation for f0 is

∂U (C(U)∂Uf0) = 0 , (5.30)

whose regular solution at the horizon is simply a constant, f0 = 1, due to the fact C(UT ) =

0. The equation for g1 is then

∂U (C(U)∂Ug1) = − iNc

4π2C
FtU = ∂U

(

iNc

4π2C
At(U)

)

, (5.31)
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whose integration is

∂Ug1 =
iNc

4π2C

At(U)

C(U)
, (5.32)

where we have used the fact At(UT ) = 0 so that the right-hand side is regular at U = UT .

Integrating once more, one gets

g1(U) =
iNc

4π2C

∫ U

∞

dU ′ At(U
′)

C(U ′)
, (5.33)

where we already chose an integration constant to have a normalizable solution for g1.

From the UV asymptotic behavior of C(U)

C(U) → (2πl2s)
2U

5
2 , U → ∞ , (5.34)

and also the previous identification of the chemical potential

At(∞) = µa , (5.35)

one finally arrives at

g1(U) → − iNc

4π2C

2

3

µa

(2πl2s)
2

1

U
3
2

+ · · · , U → ∞ . (5.36)

Inserting into (5.29), one checks that

σ(ω = 0) ≡ σ0 =
e2µa

2π2
· Nc , (5.37)

which is the right result for a single flavor NF = 1 quark we are considering.

To perform numeric jobs in the case of Sakai-Sugimoto model, one has to fix the param-

eters of the theory. First one can always work in the unit where 2πl2s = 1. From the ρ meson

mass and the pion decay constant, Sakai and Sugimoto determined the parameters [10, 18]

g2
Y MNc ≈ 17 , MKK = 0.94GeV , (5.38)

and we will take these values for illustrative purposes. For the temperature, we choose

T = 200 MeV as a representative value relevant for the RHIC experiment.2 With these

being fixed, there is no other ambiguity in the model. We present the numerical results of

σ(ω) in figure 5 and figure 6.

6 Summary of results

We set-up a couple of holographic frameworks for computing time-dependent chiral mag-

netic conductivity. In the first model, we consider a full back-reacted Reisner-Nordstrom

black-hole solution with only an axial chemical potential turned on, to study the induced

2According to ref. [15], the confinement/deconfinement transition happens at Tc = MKK

2π
≈ 150 MeV in

this model. See also ref. [19] for further aspects.
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Figure 5. Time-dependent chiral magnetic conductivity σ(ω) for various axial chemical potentials

in the Sakai-Sugimoto model with T = 200MeV. The solid line is the real part of σ(ω) while the

dashed one is the imaginary part.
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Figure 6. More results in the Sakai-Sugimoto model with T = 200MeV for other values of axial

chemical potentials.

electromagnetic current in response to a small, time-dependent magnetic field perturba-

tion. Our second model is based on the more realistic model of Sakai and Sugimoto in its

deconfined and chiral symmetry restored phase, but within a quenched/probe approxima-

tion. Both models give us qualitatively similar results for the frequency dependent chiral

magnetic conductivity, which may be a useful complementary computation for the strongly

coupled regime to the existing recent weak-coupling computation in perturbative QCD [4].
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Our numerical results are presented in figures 2, 3, 5, and 6 for an illustrative purpose.

As the results show, the real part of chiral magnetic conductivity stays to the value at

ω = 0 for small ω, contrary to the result in weak-coupling where it drops to 1
3 as soon

as ω 6= 0 [4]. As was already pointed out in ref. [4], it might be due to the strong inter-

actions of the charge carriers. Consequently, the current response and charge asymmetry

in RHIC plasma would be bigger than the weak-coupling result in ref. [4]. As a future

direction, it might be worthwhile to generalize our calculations to the cases with non-zero

electromagnetic charge density.
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A An easy method of performing numerical jobs

We explain our way of solving the equation (4.31)

∂r

(

−iωrf0 + r3V (r)∂rf0

)

− iωr (∂rf0) = 0 , (A.1)

∂r

(

−iωrg1 + r3V (r)∂rg1

)

− iωr (∂rg1) +
i12κQ

r3
f0 = 0 , (A.2)

to compute σ(ω) numerically. One first notices that it is straightforward to solve the

equation (A.1) for f0 numerically without any shooting ambiguity. For regularity at r = rH

where V (r) = 0, one simply considers r → rH limit of (A.1) to deduce the regularity

condition

(∂rf0) (rH) =

(

iω

r3
HV ′(rH) − 2iωrH

)

f0(rH) , (A.3)

and since a normalization of f0 is not important, we can start at r = rH with f0(rH) = 1

and (∂rf0) (rH) given in the above to solve (A.1) numerically for r ≥ rH .

Once f0 is found, there is a nice method of solving (A.2) for g1 without further numerics.

The idea is to transform the differential operator acting on g1 into an integrable form,

∂r

(

−iωr · +r3V (r)∂r·
)

− iωr (∂r·) = P (r)∂r

(

R(r)∂r

(

S(r) ·
)

)

, (A.4)
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and comparing the both sides gives us the equations for the yet unknown functions P (r),

R(r), and S(r) as

PRS = r3V (r) , (A.5)

P

(

R
(

∂rS
)

+ ∂r

(

RS
)

)

= ∂r

(

r3V (r)
)

− 2iωr , (A.6)

P∂r

(

R
(

∂rS
)

)

= −iω . (A.7)

Replacing R in the second equation (A.6) by using (A.5), one gets a nice simplification

∂r ln

(

S

P

)

= − 2iω

r2V (r)
, (A.8)

whose integration gives

P−1(r) = S−1(r) e
−2iω

R

r

∞
dr

′
(r′)2V (r′) . (A.9)

Using this and (A.5) to replace P and R in the last equation (A.7), one gets a second order

differential equation for S−1, which turns out to be precisely the original homogeneous

equation with the differential operator (A.4), whose regular solution we already obtained

as f0 numerically. Therefore, one can simply let S−1 = f0 and one finally has

S−1(r) = f0(r) ,

P−1(r) = f0(r) e
−2iω

R

r

∞
dr

′
(r′)2V (r′) ,

R(r) = r3V (r) (f0(r))
2 e

−2iω
R

r

∞
dr

′
(r′)2V (r′) . (A.10)

The equation (A.2) for g1 subsequently takes a form

P (r)∂r

(

R(r)∂r

(

S(r)g1

)

)

= − i12κQ

r3
f0 , (A.11)

whose first integration results in

R(r)∂r

(

S(r)g1

)

= −i12κQ

∫ r

rH

dr′
f0(r

′)

(r′)3P (r′)
, (A.12)

where we fix an integration constant by considering r = rH where the left-hand side

vanishes by R(rH) = 0. The subsequent integration gives

g1(r) = −i12κQS−1(r)

∫ r

∞

dr′

R(r′)

∫ r′

rH

dr′′
f0(r

′′)

(r′′)3P (r′′)
, (A.13)

where the second integration constant is fixed to make g1 normalizable at r → ∞. With

the explicit choice of P , R and S in (A.10), one obtains g1 solely in terms of the known

solution f0 as

g1(r) = −i12κQf0(r)

∫ r

∞

dr′
e
2iω

R

r
′

∞
dr

′′
(r′′)2V (r′′)

(r′)3V (r′)(f0(r′))2

∫ r′

rH

dr′′
(f0(r

′′))2

(r′′)3
e
−2iω

R

r
′′

∞
dr

′′′
(r′′′)2V (r′′′) .

(A.14)
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Having solved for g1, what one needs in order to find σ(ω) is the near boundary

expansion of g1(r) in r → ∞. From V (∞) = 1 and the fact that f0(∞) is some finite

constant, it is indeed checked easily that g1 has a behavior ∼ 1
r2 as r → ∞, and more

precisely

g1(r) →
(

i6κQ

f0(∞)

∫ ∞

rH

dr′
(f0(r

′))2

(r′)3
e
−2iω

R

r
′

∞
dr

′′
(r′′)2V (r′′)

)

1

r2
+ · · · . (A.15)

In conjunction with our formula for σ(ω) (4.32) and the result for the zero frequency limit

σ0 (4.37),

σ(ω → 0) ≡ σ0 = − 3κQe2

4πG5r
2
H

, (A.16)

one finally arrives at the useful expression

σ(ω)

σ0
=

2r2
H

(

f0(∞)
)2

∫ ∞

rH

dr′
(f0(r

′))2

(r′)3
e
−2iω

R

r
′

∞
dr

′′
(r′′)2V (r′′) , (A.17)

which can be directly computed numerically once we find f0 only. Our plots are generated

using this technique.

The above procedure can easily be repeated in the case of Sakai-Sigimoto model too,

and we simply provide the results of each steps. For simplicity, we work in the unit 2πl2s = 1.

Once f0(U) is found numerically by requiring at the horizon U = UT

(∂Uf0) (UT ) =

(

iω (∂UB) (UT )

(∂UC) (UT ) − 2iωB(UT )

)

f0(UT ) , (A.18)

the differential operator acting on g1 can be transformed to an integrable form with

S−1(U) = f0(U) ,

P−1(U) = f0(U) e
−2iω

R

U

∞ dU ′ B(U′)
C(U′) ,

R(U) = C(U)
(

f0(U)
)2

e
−2iω

R

U

∞ dU ′ B(U′)
C(U′) , (A.19)

so that the equation for g1(U) is integrated as

g1(U)=− iNc

4π2C
f0(U)

∫ U

∞

dU ′ e
2iω

R

U
′

∞ dU ′′ B(U′′)
C(U′′)

C(U ′)
(

f0(U ′)
)2

∫ U ′

UT

dU ′′FtU (U ′′)
(

f0(U
′′)
)2

e
−2iω

R

U
′′

∞ dU ′′′ B(U′′′)
C(U′′′) ,

(A.20)

where

FtU (U) = − α√
U5 + α2

. (A.21)

From the near boundary behavior C(U) → U
5
2 as U → ∞, one deduces without difficulty

that

g1(U) →
(

iNc

6π2Cf0(∞)

∫ ∞

UT

dU ′ FtU (U ′)
(

f0(U
′)
)2

e
−2iω

R

U
′

∞ dU ′′ B(U′′)
C(U′′)

)

1

U
3
2

+ · · · , (A.22)
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from which in conjunction with (5.29) and (5.37),

σ(ω = 0) ≡ σ0 =
e2µa

2π2
· Nc , (A.23)

one finally obtains the expression

σ(ω)

σ0
=

1

µa

(

f0(∞)
)2

∫ ∞

UT

dU ′ α
√

(U ′)5 + α2

(

f0(U
′)
)2

e
−2iω

R

U
′

∞ dU ′′ B(U′′)
C(U′′) , (A.24)

solely in terms of f0(U).

References

[1] D.T. Son and A.O. Starinets, Viscosity, Black Holes and Quantum Field Theory,

Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [SPIRES].

[2] M. Rangamani, Gravity & Hydrodynamics: Lectures on the fluid-gravity correspondence,

Class. Quant. Grav. 26 (2009) 224003 [arXiv:0905.4352] [SPIRES].

[3] K. Fukushima, D.E. Kharzeev and H.J. Warringa, The Chiral Magnetic Effect,

Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [SPIRES].

[4] D.E. Kharzeev and H.J. Warringa, Chiral Magnetic conductivity,

Phys. Rev. D 80 (2009) 034028 [arXiv:0907.5007] [SPIRES].

[5] P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya and M.I. Polikarpov, Chiral

magnetization of non-Abelian vacuum: a lattice study, arXiv:0906.0488 [SPIRES];

Numerical evidence of chiral magnetic effect in lattice gauge theory,

Phys. Rev. D 80 (2009) 054503 [arXiv:0907.0494] [SPIRES]; Lattice QCD in strong

magnetic fields, arXiv:0909.1808 [SPIRES]; Quark electric dipole moment induced by

magnetic field, arXiv:0909.2350 [SPIRES].

[6] A. Rebhan, A. Schmitt and S.A. Stricker, Meson supercurrents and the Meissner effect in the

Sakai-Sugimoto model, JHEP 05 (2009) 084 [arXiv:0811.3533] [SPIRES].

[7] D.T. Son and P. Surowka, Hydrodynamics with Triangle Anomalies,

Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [SPIRES].

[8] G. Lifschytz and M. Lippert, Anomalous conductivity in holographic QCD,

Phys. Rev. D 80 (2009) 066005 [arXiv:0904.4772] [SPIRES].

[9] D.T. Son and A.O. Starinets, Hydrodynamics of R-charged black holes, JHEP 03 (2006) 052

[hep-th/0601157] [SPIRES];

J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black

holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [SPIRES];

N. Banerjee et al., Hydrodynamics from charged black branes, arXiv:0809.2596 [SPIRES];

M. Torabian and H.-U. Yee, Holographic nonlinear hydrodynamics from AdS/CFT with

multiple/non-Abelian symmetries, JHEP 08 (2009) 020 [arXiv:0903.4894] [SPIRES].

[10] T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD,

Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [SPIRES].

[11] A. Rebhan, A. Schmitt and S.A. Stricker, Anomalies and the chiral magnetic effect in the

Sakai-Sugimoto model, arXiv:0909.4782 [SPIRES].

– 27 –

http://dx.doi.org/10.1146/annurev.nucl.57.090506.123120
http://arxiv.org/abs/0704.0240
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0704.0240
http://dx.doi.org/10.1088/0264-9381/26/22/224003
http://arxiv.org/abs/0905.4352
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0905.4352
http://dx.doi.org/10.1103/PhysRevD.78.074033
http://arxiv.org/abs/0808.3382
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.3382
http://dx.doi.org/10.1103/PhysRevD.80.034028
http://arxiv.org/abs/0907.5007
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0907.5007
http://arxiv.org/abs/0906.0488
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0906.0488
http://dx.doi.org/10.1103/PhysRevD.80.054503
http://arxiv.org/abs/0907.0494
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0907.0494
http://arxiv.org/abs/0909.1808
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0909.1808
http://arxiv.org/abs/0909.2350
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0909.2350
http://dx.doi.org/10.1088/1126-6708/2009/05/084
http://arxiv.org/abs/0811.3533
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.3533
http://dx.doi.org/10.1103/PhysRevLett.103.191601
http://arxiv.org/abs/0906.5044
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0906.5044
http://dx.doi.org/10.1103/PhysRevD.80.066005
http://arxiv.org/abs/0904.4772
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0904.4772
http://dx.doi.org/10.1088/1126-6708/2006/03/052
http://arxiv.org/abs/hep-th/0601157
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0601157
http://dx.doi.org/10.1088/1126-6708/2009/01/055
http://arxiv.org/abs/0809.2488
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.2488
http://arxiv.org/abs/0809.2596
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.2596
http://dx.doi.org/10.1088/1126-6708/2009/08/020
http://arxiv.org/abs/0903.4894
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.4894
http://dx.doi.org/10.1143/PTP.113.843
http://arxiv.org/abs/hep-th/0412141
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0412141
http://arxiv.org/abs/0909.4782
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0909.4782


J
H
E
P
1
1
(
2
0
0
9
)
0
8
5

[12] D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence:

Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES];

C.P. Herzog and D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence,

JHEP 03 (2003) 046 [hep-th/0212072] [SPIRES].

[13] S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics

from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].

[14] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime and

renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595

[hep-th/0002230];

M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic Renormalization, Nucl. Phys. B

631 (2002) 159 [hep-th/0112119].

[15] O. Aharony, J. Sonnenschein and S. Yankielowicz, A holographic model of deconfinement and

chiral symmetry restoration, Annals Phys. 322 (2007) 1420 [hep-th/0604161] [SPIRES].

[16] O. Aharony, K. Peeters, J. Sonnenschein and M. Zamaklar, Rho meson condensation at finite

isospin chemical potential in a holographic model for QCD, JHEP 02 (2008) 071

[arXiv:0709.3948] [SPIRES].

[17] A. Parnachev, Holographic QCD with Isospin Chemical Potential, JHEP 02 (2008) 062

[arXiv:0708.3170] [SPIRES].

[18] T. Sakai and S. Sugimoto, More on a holographic dual of QCD,

Prog. Theor. Phys. 114 (2005) 1083 [hep-th/0507073] [SPIRES].

[19] K. Peeters and M. Zamaklar, The string/gauge theory correspondence in QCD,

Eur. Phys. J. ST 152 (2007) 113 [arXiv:0708.1502] [SPIRES].

– 28 –

http://dx.doi.org/10.1088/1126-6708/2002/09/042
http://arxiv.org/abs/hep-th/0205051
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0205051
http://dx.doi.org/10.1088/1126-6708/2003/03/046
http://arxiv.org/abs/hep-th/0212072
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0212072
http://dx.doi.org/10.1088/1126-6708/2008/02/045
http://arxiv.org/abs/0712.2456
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0712.2456
http://arxiv.org/abs/hep-th/0002230
http://arxiv.org/abs/hep-th/0112119
http://dx.doi.org/10.1016/j.aop.2006.11.002
http://arxiv.org/abs/hep-th/0604161
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0604161
http://dx.doi.org/10.1088/1126-6708/2008/02/071
http://arxiv.org/abs/0709.3948
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0709.3948
http://dx.doi.org/10.1088/1126-6708/2008/02/062
http://arxiv.org/abs/0708.3170
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0708.3170
http://dx.doi.org/10.1143/PTP.114.1083
http://arxiv.org/abs/hep-th/0507073
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0507073
http://dx.doi.org/10.1140/epjst/e2007-00379-0
http://arxiv.org/abs/0708.1502
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0708.1502

	Introduction
	A quick review on physics of chiral magnetic effect
	Retarded response (Green's) function in Eddington-Finkelstein coordinate
	Holographic model I: Einstein plus U(1)**2
	Holographic model II: the model of Sakai and Sugimoto
	Summary of results
	An easy method of performing numerical jobs

